Code & Fun

第48天。

今天的题目是Maximum Length of Repeated Subarray:

一道DP的题目,有点像LCS。

我们假定dp[i, j]为以A[i]结尾和以B[j]结尾的最长重合子数组的长度,则:

$$
dp[i, j] = \left{
\begin{aligned}
0 &, & A[i] \neq B[i] \
dp[i-1, j-1] + 1 &, & A[i] = B[i]
\end{aligned}
\right.
$$

然后我们只需要对dp求最大值即可得到最长重复子数组的长度:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
int findLength(vector<int>& A, vector<int>& B) {
int n = A.size();
if (n == 0) return 0;

vector<int> dp(n+1, 0);
int res = 0;
for(int i = 1;i <= n; i++) {
for(int j = n;j >= 1; j--) {
dp[j] = (A[i-1] == B[j-1]) ? (dp[j-1] + 1) : 0;
res = max(dp[j], res);
}
}

return res;
}

来多一道Edit Distance:

一道hard的题目,一次直接AC了。也是DP的题目,这道题让人觉得麻烦的是,它支持三种操作:

  • 插入
  • 删除
  • 替换

一开始会觉得,插入和删除有点难区分,后来想了想,好像他们的代价是一样的,所以我们可以只用删除,不用插入,所以我们可以来解决这个问题:

dp[i, j]word1[0..i]word2[0..j]的编辑距离:

  • 如果word1[i] == word2[j]的话,dp[i,j] = dp[i-1, j-1],即不需要做任何编辑
  • 如果word1[i] != word2[j]的话,我们可以尝试删除或替换两种操作
    • 删除word1[i]
    • 删除word2[i]
    • 替换word1[i]word2[i]

dp[i, j] = min(dp[i-1, j], dp[i, j-1], dp[i-1, j-1])

边界条件就是,当i==0时,dp[i, j] = j,当j==0时,dp[i, j] = i

所以我们可以写出动规方程:

$$
dp[i, j] = \left{
\begin{aligned}
i &, & i = 0 \
j &, & j = 0 \
dp[i-1, j-1] &, & word1[i] = word2[j] \
min(dp[i-1, j], dp[i, j-1], dp[i-1, j-1]) &, & A[i] \neq B[i]
\end{aligned}
\right.
$$

因此,代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
int minDistance(string word1, string word2) {
int n1 = word1.size(), n2 = word2.size();
vector<int> dp(n2 + 1);
for(int j = 0;j <= n2; j++) {
dp[j] = j;
}
int prev;
for(int i = 1; i <= n1; i++) {
prev = dp[0];
dp[0] = i;
for(int j = 1;j <= n2; j++) {
swap(dp[j], prev);
if (word1[i-1] != word2[j-1]) {
dp[j] = min(min(dp[j-1], dp[j]), prev) + 1;
}
}
}
return dp[n2];
}

本文首发于Code & Fun